DRONE LANDING AND REINFORCEMENT LEARNING: STATE-OF-ART, CHALLENGES AND OPPORTUNITIES

Drone Landing and Reinforcement Learning: State-of-Art, Challenges and Opportunities

Drone Landing and Reinforcement Learning: State-of-Art, Challenges and Opportunities

Blog Article

Unmanned aerial Incense vehicles, and special multirotor drones, have shown great relevance in a plethora of missions that require high affordance, field of view, and precision.Their limited payload capacity and autonomy make its landing a crucial task.Despite many attempts in the literature to address drone landing, challenges and open gaps still exist.Reinforcement Learning has gained notoriety in a variety of control problems, with recent proposals for drone landing applications.

This work aims to present a systematic literature review on works employing Deep Reinforcement Learning for multirotor drone landing in both static and dynamic platforms.It also revisits Reinforcement Learning Algorithms, the main frameworks and simulators adopted for specific landing Creator T-Shirt operations.The comprehensive analysis performed on reviewed works revealed that there are important untackled challenges when it comes to wind disturbances, unpredictability of moving landing targets, sensor latency, and sim-to-real gap.Finally, we present our critical analysis of how recent state-of-the-art deep learning concepts can be combined with reinforcement learning to leverage the latter in addressing the open gaps in future works.

Report this page